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Abstract— Electromagnetic field radiation mechanism for any arbitrary conducting surface is mathematically computed by solving 
the pocklington’s equation, and which is generalize that can be used to any type of antenna in field theory. Tangential vector on any 
arbitrary surface is defined with the help of surface equation. Using Lorentz gauge condition, scalar potential is defined in terms of 
vector potential and scattered electric field is calculated on the arbitrary surface. Mathematical representation of E and H filed for 
parabolic reflector is also derived.  

Index Terms— Electromagnetic scattering, Integral equations, Numerical solutions, Pocklington’s equation, parabolic reflector. 
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I. INTRODUCTION 

 
HE integral equation method, with a Moment Method 
numerical solution, is used first to find the self- and 

driving-point impedances of any antenna, and mutual 
impedance of wire type of antennas. This method casts the 
solution for the induced current in the form of an integral 
where the unknown induced current density is part of the 
integrand. Numerical techniques, such as the Moment 
Method, can then be used to solve the current density. In 
particular two classical integral equations for linear elements, 
Pocklington’s and Hall´en’s Integral equations, is used. 
Hall´en’s equation is usually restricted to the use of a delta-
gap voltage source model at the feed of a wire antenna. 
Pocklington’s equation, however, is more general and it is 
adaptable to many types of feed sources (through alteration of 
its excitation function or excitation matrix), including a 
magnetic frill.  
The straight, thin, center-driven wire is often used as a 
transmitting antenna. In theoretical studies, the basic unknown 
is the current along the antenna, which satisfies a one-
dimensional, first-kind, Fredholm-like integral equation 
usually referred to as “Hallén’s” equation, or a corresponding 
integrodifferential equation called “Pocklington’s” equation. 
Pocklington’s integro-differential equation is a staple of thin-
wire antenna analysis, and appears in most antenna text books 

[1]-[3], as well as forming the basis of antenna simulation 
codes such as the Numerical Electromagnetic Code (NEC) [2]. 
In 1897 Pocklington deduced its equation for straight 
structures, and in 1965 Mei, used a heuristically procedure to 
define it for bent wires [4]; for an arbitrary shaped wire, it is 
possible to deduce the equation using a formal way, starting 
from Maxwell equations [6] getting:  

'2
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' 4 '

jk r r
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s s r rεω π
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∫ -- (1) 

Where I
SE is the tangential incident electric field. 

Considering the thin-wire approximation and skin effect, is 
possible to express the electric field as a linear integration 
over the arch length s �. The general Pocklington equation (1) 
can be used for any possible thin wire geometry. The wire’s 
geometry is expressed by the dot product . 's s , where ( )s s  

are the unit tangential vector for the wire’s axis and '. 's s the 
same for the parallel curve representing the current filament. 

( ) ( ) ( )( )

'( ') '( ') '( ')'( ')
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= + +
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----------------- 

(2) 
The geometry is also expressed by the difference between the 

vectors 'r r−  as: 
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Defined all former equations, the work is reduced to find the 
vectors representing the parallel and axis curves for the 
considered wire and solve it by Method of Moments [7] 

II. THEORY AND FORMULATION 

Generalization of a pocklington’s equation for any arbitrary 
surface. Let the surface equation be given by ( , )r u v where u 
and v are free parameter. Define the following tangential 
vector on the surface [8]-[10]. 

( , )u
re u v
u

δ
δ

=   And ( , )v
re u v
v

δ
δ

=  

The surface element is given by:  
( , ) u vdS u v e e dudv= ×  

The surface current density can be written as:  
( , ) ( , ) ( , ) ( , ) ( , )s u u v vJ u v J u v e u v J u v e u v= +  

It follows that the vector potential produced by this surface 
current density is given by [11] 

( , )

( ) ( , ). ( , )
4 ( , )

jkR u v
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eA r J u v dS u v
R u v

µ
π

−

= ∫  

Here, ( , ) ( , )R u v r r u v= −  
We calculate the scalar potential from this making use of the 
Lorentz gauge condition [12] 

( )j divA
ωµε

Φ =  

Now 
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It follows that   
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So that,  
E j Aω= −∇Φ − =
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The electric field, we denote by ( )sE r  the subscript s 

standing for “Scattered” [13]. We can write in component 

form as:     
3

1
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Where ( , , )km r u vψ =
 

  
( , , ) ( , ) ( , , )

4 4k m km
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− −  

The tangential components of the scattered electric field on 
the given surface (along the ue  and ve  direction) are [14] 

3 3

, ,
1 1

( , ) , ( , )u s k u sk v s k v sk
k k

e E x E e E x E
= =

= =∑ ∑  

This can be used to generalize the pocklington’s equation. 

III. APPLICATION FOR PARABOLIC REFLECTOR 

It has been shown by geometrical optics that if a beam of 
parallel rays is incident upon a reflector whose geometrical 
shape is a parabola, the radiation will converge (focus) at a 
spot which is known as the focal point. A parabola is defined 
as the locus of a point the ratio of whose distance from a point 
P and from a line is equal to unity. The point ‘P’ is called the 
focus. Equation of a parabola in the x y−  plane can be 

expressed as 2 4y ax= . Focus of such a parabola is given 

by ( ,0)P a= . The symmetrical point on the parabolic 
surface is known as the vertex. Rays that emerge in a parallel  
Formation are usually said to be collimated. A paraboloid is a 
surface obtained by rotating a parabola about the normal to its 
apex. Equation of parabola can be given as: - 

2 2 24x y az ρ+ = =  
Where, y= distance at y axis, x= distance at x axis, a = 
distance of focus point from axis 

As, 2 4y ax=   4azρ =  

And    2 2x yρ = +  

So that 2 2 4 0x y az+ − =  
Parabolic cylinders have widely been used as high-gain 
apertures fed by line sources. The analysis of a parabolic 
cylinder (single curved) reflector is similar, but considerably 
simpler than that of a paraboloidal (double curved) reflector. 
The principal characteristics of aperture amplitude, phase, and 
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polarization for a parabolic cylinder, as contrasted to those of 
a paraboloid, are as follows:  
1. The amplitude taper, due to variations in distance from the 
feed to the surface of the parabolic reflector, is proportional to 

1/ρ in a cylinder compared to 2

1
r

 in a paraboloid. 

2. The focal region, on which incident plane waves converge, 
is a line source for a cylinder and a point source for a 
paraboloid. 
3. When the fields of the feed are linearly polarized and which 
are parallel to the axis of the cylinder, no cross-polarized 
components are produced by the parabolic cylinder. That is 
not the case for a paraboloid.  

 
Fig 1. After rotating a parabola about the normal to its apex. 
 

IV. CALCULATION OF INFINITESIMAL AREA 

From trigonometry, we have 
cosx ρ φ=    

siny ρ φ=   And, 
2

4
z

a
ρ

=  

 The equation of the paraboloid can be expressed in 
parametric form as – 

 
2

( , ) .cos( ) .sin( ) ( )
4

r x y z
a

ρρ φ ρ φ ρ φ= + +     

Tangent vector on this surface relative to the parametric 
coordinate ( , )ρ φ  will be 

 cos( ) sin( ) ( )
2

re x y z
aρ

δ ρφ φ
δρ

= = + +   

And 

 1 sin( ) cos( )re x yφ
δ φ φ

ρ δφ
= = − +  

Area element (differential) on the surface is given by – 

( , ) .r rdS x d dδ δρ φ ρ φ
δρ δφ

=         

Or, 

( , ) .dS e e d dρ φρ φ ρ ρ φ= ×  

Using cross product, i.e. area under the infinitesimal curve 

of e eρ φρ× , 

i.e.
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a aρ φ

ρ ρρ φ φ× = − − +   

2 2
2( ) cos( ) ( )sin( ) (1)
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e e

a aρ φ
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So that, 

2

1
2

e e
aρ φ

ρρ  × = +   
 

Therefore, 
2 2( , ) 1 / 4dS a d dρ φ ρ ρ ρ φ= +  

V. CALCULATION OF CURRENT DENSITY 

It is well aware that, electric and magnetic representation in 
terms of fields generated by an electric current source is J and 
a magnetic current source is M. The procedure requires that 
the auxiliary electric and magnetic vector potential functions 
A and F generated, respectively, by J and M are found first. In 
turn, the corresponding electric and magnetic fields are then 
determined (EA, HA due to A and EF ,HF due to F). The total 
fields are then obtained by the superposition of the individual 
fields due to A and F (J and M). 
As we know that surface current density is given by: 

x y zS x y zJ a J a J a J= + +  
  Surface current density for 

paraboloid can be expressed in parametric form as. 
( , ) Z ZJ J e J e J eρ ρ φ φρ φ = + +   

Where , 
0Z ZJ e =  

Therefore, 
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   

( , )

(cos( ) ( sin( ) cos( ) ) sin( ) ( ) )
2

J

J x J x y y z
aρ φ

ρ φ
ρφ φ φ φ

=

+ − + + + 

Combining them in x, y and z coordinates, 

 

( , )

[ cos( ) sin( )] [ sin( ) cos( )] [ ]
2

J

J J x J J y J z
aρ φ ρ φ ρ

ρ φ
ρφ φ φ φ

=

− + + + 

 

VI. CALCULATION OF DISTANCE R 

Field radiated by a point source varies as, 
jkre

r

−

   

Where, jkre−  is phase factor and 
1
r

 is the amplitude factor 

For far field calculation  
'cosR r r ψ= −  For phase terms (ψ  is the angle between 

the two vectors r  and 'r  as shown) 
R r= , For amplitude, and 

'cos . 'r r rψ =    

  '' 'cos( ') 'sin( ') ( )
2

r x y z
a

ρρ φ ρ φ= + +   

(  ' ' ' 'r xx yy zz= + +  ) 
From equation

 



 



sin cos cos cos sin
sin sin cos sin sin

cos sin 0

x r

y

z

θ φ θ φ φ
θ φ θ φ θ θ

θ θ φ

   −        = −     −       




 

 sin cos sin sin cosr x y zθ φ θ φ θ= + +   

'
'sin( ) cos( ) cos( ') 'sin( ) sin( ) sin( ') cos

2

. '

a

r r
ρ

ρ θ φ φ ρ θ φ φ θ+ +

=

'. ' 'cos 'sin( ) cos( ') cos
2

r r r
a

ρψ ρ θ φ φ θ= = − +  

'
''sin( ) cos( ') cos

2

R r rr

R r
a

ρρ θ φ φ θ

= −

= − − +



 

This can be written as, 
'cosR r r ψ= −  

Where, 
''cos 'sin( ) cos( ') cos

2
r

a
ρψ ρ θ φ φ θ= − +  

VII. CALCULATION OF VECTOR POTENTIAL 

It is a very common practice in the analysis procedure to 
introduce auxiliary functions, known as vector potentials, 
which will aid in the solution of the problems. The most 
common vector potential function are the A (magnetic vector 
potential) and F (electric vector potential). To calculate the E 
and H field, directly from the electric and magnetic current 
density (J and M) require higher degree of integration [15], 
which introduce the extra computational time. Therefore, 
calculation of E and H fields are done through vector potential 
A and F, through J and M. First integration is done to 
calculate the vector potential A and F, and then differentiation 
to obtain E and H fields [16]-[18]. 
 

 
Fig 2. Calculation of E and H field using J and M field. 

 
As per the electromagnetic field theory, we know that 
magnetic vector potential can be given as:  

4

jkR

s
S

eA J ds
R

µ
π

−

= ∫∫   
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4

jkr jkr

s
S
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2 21 / 4

4
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S

e eA J a d d
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π

− +

= +∫∫  




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4

[ ]
2

jkr

S

J J x
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J z
a
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ρ
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

 

Multiply by 
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2 21 / 4
jkre a d d
r

ψ

ρ ρ ρ φ
+

+  
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Multiply by 
'( 'sin( )cos( ') cos )

2
2 21 / 4

jk
ae a d d

r

ρρ θ φ φ θ

ρ ρ ρ φ
+ − +

+  

 
With the help of Maxwell equations in homogenous, linear 
and isotropic medium:  
 

. 0

. 0

E j H M
H j E J

B
and

D

ωµ
ωε

∇Χ = − −
∇Χ = +
∇ =

∇ =

 

Where all variables are having their traditional representation. 
After some mathematical computation (First by putting, 

0, 0M J= ≠   
And then 

0, 0J M= ≠  
We get. 

( . )jE j A Aω
ωµε

= − − ∇ ∇  

And 

( . )jH j F Fω
ωµε

= − − ∇ ∇  

VIII. CONCLUSION 

The radiation characteristics of any arbitrary surface have 
been investigated by applying the method of moment and 
Pocklington’s equation, and radiated field equation has been 
obtained. The integral equation for a parabolic reflector is 
derived; some properties of integral equation are presented 
and utilized to reduce the computation of integral equation to 
some sparse matrix notation. The method is computationally 
striking, and accurately formulation is demonstrated through 
illustrative example. 
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